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The possibility of estimating the activity distribution inside an industrial catalyst pellet from 
measurements of the composition of the outlet stream of a laboratory stirred tank reactor \IS 

volumetric flow rate is discussed. It is assumed that the form of the reaction rate expression for 
the chosen testing reaction is known and the value of the corresponding reaction rate constant 
can be evaluated from the measurements in the kinetic region on the crushed pellet. A procedure 
is proposed which allows to determine whether the activity distribution estimation is feasible, 
and demands on the model test reaction are discussed. The estimation technique is applied to 
simulated (both precise and noisy) data. 

The estimation of the activity distribution inside an industrial catalyst pellet can be 
useful for several reasons. Pellets with non-uniform active catalyst distribution are 
produced purposely to increase effectiveness factor, selectivity, or resistance to 
deactivation. Then the estimation of the active catalyst distribution is needed in order 
to control the impregnation procedure for preparing the pellet with desired activity 
profile. Non-uniform activity distribution can also be caused by deactivation. Then 
the estimation of the activity distribution can yield information about the mechanism 
and course of deactivation. 

The catalyst pellet can be nonhomogeneous owing to either catalytic activity or 
diffusional properties. To estimate both nonhomogeneities from kinetic data is not 
feasible, so we assume that the pellet is diffusionally homogeneous, i.e., that the 
value of the effective diffusion coefficient is uniform throughout the pellet. The aim 
of the estimation technique proposed is to obtain information about the activity 
inside the pellet. 

mEORETICAL 

To estimate the distribution, a test reaction is used. It is assumed that the form of its 
reaction rate expression is known, and the value of the reaction rate constant can 
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be evaluated from measurements in the kinetic region on the crushed pellet. Further, 
the values of the effective diffusion coefficients have to be estimated by a different 
method. The proposed method, in principle, allows to estimate their values simul
taneously but with a certain inaccuracy and uncertainty. 

The activity (or the "rate constant denisty function") is defined as the ratio 
of the local rate constant k(r) and its volume averaged value km (see refs1 •2) 

(1) 

where 

(2) 

The rate constant density function has to satisfy the condition 

(3) 

To estimate the activity distribution, the dependence of the composition of the 
outlet stream from the laboratory continuous stirred tank reactor on volumetric 
flow rate under steady state conditions and constant inlet stream composition has 
to be measured. 

The goal of the method is to estimate the activity distribution inside the pellet 
to obtain the best fit of the measured and computed (for given activity distribution) 
reactor outlet concentrations. As the objective function, 

I J 

F[ <P(r)] = L L (Cji - Cji.exp)2 (4) 
i= 1 j= 1 

has been used, where Cji is the concentration corresponding to the distribution 
<P(r), J is the number of analysed components and I the number of measurements. 

The estimation has two levels. At the first stage we find out whether the test reaction 
and reaction conditions are properly chosen, in the second one the optimization 
procedure is carried out. 

Analysis of the Method and Diffusion Coefficient Estimation Feasibility 

To determine in general, whether the method is feasible or not, is not easy. Whether 
a reliable estimate of the activity distribution from kinetic data is possible at all, 
depends on the form of the reaction rate equation. For some rate equations the test 
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is not sensitive. The test sensitivity further depends on the fact how far is the consi
dered region from the kinetic one. In the kinetic region, the reaction proceeds in the 
whole pellet and the mean reaction rate does not depend on the activity distribution. 
Deep inside the diffusion region, the mean reaction rate is a function of activity 
distribution, but on the other hand, the reactants penetrate only into a part of the 
pellet near the active zone border. Therefore thc kinetic measurements can reflect 
only the state of the penetrated zone of the pellet. In the practical realization, it is 
necessary to take into account also the uncertainty due to experimental noise. 

As the preliminary analysis, a heuristic procedure is suggested consisting in the 
pellet behaviour simulation for a given kinetic equation. 

Preliminary Analysis 

We choose several different activity distributions satisfying Eq. (3), and compute 
the reactor outlet gas phase concentration for the whole volumetric flow interval 
investigated. Three different cases can be distinguished: 

a) The simulated dependences are equal; the method is then principally unap
plicable. 

b) The differences between individual dependences are smaller than the dispersion 
of experimental data; then the method is not feasible because of limited accuracy. 

c) The dependences are significantly different, then we can estimate the activity 
distribution. 

As different activity distributions we can choose, for example, the uniform, in
creasing and decreasing distributions towards the pellet center. Another possibility 
is to assume activity in a narrow region (at one point) and alter its position. 

This heuristic approach is more feasible from the practical point of view than 
a general analysis of the form of functions and results. It is obvious that an analogical 
analysis can be made before we start the kinetic tests to find out whether the rate 
equation form is reasonable for the estimation method and how deep in the diffusion 
region the region of the chosen reaction conditions is located. 

To estimate the diffusion coefficient along with the activity distribution appears 
to be an ill-posed problem (flat extreme). A possibility to circumvent this difficulty 
is to employ a two-level optimization: By using a one-parameter optimization 
procedure, to look for the value of the diffusion coefficient and for each value to 
estimate the activity distribution which minimizes objective function (4). However, 
since the minimum of the objective function with respect to the diffusion coefficient 
is flat, this method can fail for data with experimental error. Then we need more 
information about activity, for example, which part of the pellet is active, or whether 
the distribution has increaisng or decreasing tendency, etc. 
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Application of Optimization Techniques 

Providing the preliminary analysis exhibits the feasibility of the method, we can 
employ some optimization techniques to find the activity distribution minimizing 
objective function (4) for a given value of the diffusion coefficient. 

Since iP is unlikely to be linear, we cannot expect to be able to express it in a closed 
form. Two different approaches have been employed: 

a) Representation in a "parametric" form - the step function (Fig. 1) has been 
selected 

where 

X(J)(cp) = {l. .. cP E W , 

O •.. cp¢w 

(5) 

(6) 

n is the integer characteistic of the pellet geometry, and cp is the dimensionless space 
coordinate. 

b) Representation in a "non-parametric" form, i.e., by a piece-wise linear function 
given by the values iP(CPk) in equidistant mesh points dividing the interval (0, I). 

• I 
13 f------.-----. 

FIG. 1 

Step function representation 
I 
o 1 .p 

Mathematical Model of the Pellet and Reactor 

Let us consider the test reaction A -+ products of m-th order, isothermal conditions, 
and negligible external diffusion. Then the model equations in the dimensionless 
form are as follow: 

(7) 
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(mass balance of the pellet) 

(Dirichlet boundary conditions) 

(mass balance of the reactor) 

(reaction rate equation) 

qJ = 0 :dYA/dqJ = 0 

qJ = 1 : YA = YA( 1) 

R = tJ>Y~ 

R = (n + 1) f: qJ"R dqJ 

(relation for the mean reaction rate). 
From Eqs (7), (8), (9), and (11) we obtain the boundary condition 

Brunovska, Horak: 

(8) 

(9) 

(10) 

(11) 

(12) 

In case of the step function representtion we can take into account that the 
reaction does not take place outside the interval (qJl' q(2) where we obtain solution 
of the Eq. (7) in the closed form 

(13) 

(14) 

(15) 

(16) 

where I/!,,(qJ) = qJ - 1 for n = 0 (slab), I/!,,(qJ) = In qJ for n = 1 (infinite cylinder), 
and I/!,,(qJ) = 1 - l/qJ for n = 2 (sphere). 

Optimization Technique 

For a simple reaction with one reactant, the objective function in the dimensionless 
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form becomes 
1 

F[<1>(<p)] = L (YA,(l) - yAsI)2, (18) 
i= 1 

where YAs is the measured and YAel) the computed dimensionless concentration on 
the pellet surface (and in the gas phase of the reactor as well). 

For the step function representation, the objective function has two parameters 
<P1 and <P2' both from the interval (0,1) and <PI < <P2' The minimum of the objective 
function has been estimated by the sectioning method 3 • 

In case of non parametric representation, the objective function has K parameters 
<1>( <P1)' <1>( <P2)' •.• , <1>( <PK)' The constraint is relation (3) which in the dimensionless 
form becomes 

(19) 

and the non-negativity of <1>(<Pk)' To find the minimum of function (18) a gradient 
type method has been employed4 IS. The gradient is the vector with components 
(ej. Appendix) 

k = 1, ... ,K (20) 

and p is the solution of the adjoint equation 

(21) 

with boundary conditions 

<P = 0 : dp/d<p = 0 

(22) 

Due to the constraints (relation (19) and non-negativity of <1» the projected gradient 
method has been applied. The (l + l)-th iteration is computed from the I-th one 
by the scheme 

(23) 

where 
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and 

Sk = {OOF/M)k for CPk > E or cPk ;£ E and 
for CPk;£ E and of/ocPk > 0 

q = (n + 1) IS<P"d<P' 

Brunovskli, Horak: 

The step length AI has been determined by a one-parameter optimization method 
in the gradient direction (as in the method of steepest descent). 

The system of model equations as well as the relatjon for the gradient components 
has been solved numerically. For the reaction-diffusion equation the finite difference 
scheme has been employed to obtain a system of nonlinear algebraic equations 
which has been solved by the Newton-Raphson procedure with adjustable step 
length. As the first iteration the solution for the first-order reaction has been chosen. 
Using the finite difference scheme for the adjoint equation we obtain a system of 
linear algebraic equations. 

RESULTS AND DISCUSSION 

As the testing reaction a second-order one has been chosen. We assume that the 
va luc of the effective diffusion coefficient as well as the volume-averaged reaction 
rate constant are known. To find out whether the problem is solvable or not and 
which reaction conditions are suitable, the preliminary analysis described in the 
theoretical part has been employed. The uniform activity distribution and the model 
of the pellet with one point activity distributions2 have been considered. For the 
second-order reaction it follows 

(n + 1) (YA(l) - YA1) 

Th~ In <Pt 

where YAI is the concentration at the active point <Pl.' 

(24) 

(25) 

The simulated outlet reactor concentration vs volumetric flow rate are illustrated 
in Figs 2, 3, and 4 for several different values of the Thiele modulus. In Fig. 5 several 
concentration profiles in the pellet with uniform activity distribution are compared 
for the given values of the Thiele moduli. This shows how deep the regime in the 
diffusion region is located. It is obvious, that with increasing the Thiele modulus 
the pellet response is more sensitive to the activity distribution. On the other hand, it 
decreases the concentration in the region near the pellet center so that the test can be 
insensitive to the activity distribution in this zone. 
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In the preliminary analysis described, the change of the Thiele modulus has been 
realized by changing the reaction rate constant. The value of the Thiele modulus 
can be adjusted by the inlet concentration, too. 

On the basis of this preliminary analysis, the data for Thi = 10 (km = 1 m3 • 

. kmol- 1 S-I, ZRO = 1'5.10- 5 kmol), cylindrical geometry, and chosen activity 

Flo. 2 

Gas phase concentration vs volumetric flow 
rate (Th~ = 1, km = 0'1 m3 kmol- 1 s-l, 

ZRO = 1'5.10- 5 kmol, n = 1). U uniform 
activity distribution. Activity at point 
"'1 = 0'1; 0'3; 0'6; 0'9 

o 5 10 

FIG. 3 

Gas phase concentration vs volumetric flow 
rate (Thf = 10, km = 1 m3 kmol- 1 s-l, 

ZRO = 1'5.10- 5 kmol, n = 1). U uniform 
activity distribution. Activity at point 
911 = 0'1; 0'3; 0'6; 0'9 
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Flo. 4 

Gas phase concentration vs volumetric flow 
rate (Thf = 100, km = 10m3 kmol- 1 s-I, 

ZRO = I·S. 10- 5 kmol, n = 1). U uniform 
activity distribution. Activity at point 
"'1 = 0'1; 0'3; 0'6; 0'9 
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Flo. S 

Concentration profile in the pellet with 
uniform activity distribution (n = I, ZRO = 
= I·S. 10- 5 kmol). 1 Thl = I, V= l. 
.10- 5 m's-l; 2 Thl = 10, V= S • 
. 10- 5 m3 s-l; 3 Thl = 100, V= 1 . 
. 10-4 m3' S-1 
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Step function representation. Example 2 
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FlO. 6 

Step function representation. Example 1 
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Flo. 8 

Selection of the first iteration for the gradient 
method. Example 1. 1 F = 0'0023; 2 F = 
= 0'0102; 3 F= 0'0216; -4 F= 0·0494 
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FIG. 9 

Non-parametric activity distribution repre
sentation. Example 1. Full line - precise 
data; dashed line - data with accidental 
error ±S% 

1 

2421 

4 

F.103 ~3 
2 

2 
1 

0 2 4 
Iteration 

FIo. 10 

Decrease of the objective function by the 
gradient method. Example 1. 1 Prcc:isc data; 
2 data with accidental error ±O'S%; 3 data 
with accidental error ± S% 
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FIG. II 

Comparison of integral (26) for estimated 
and simulated data. Example 1. 1 Step 
function representation; 2 non-parametric 
representation 
---~--~~ --------
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FIG. 12 

Comparison of integral (26) for estimated 
and simulated data. Example 2. Step func
tion representation 
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distribution have been simulated. For the activity distribution, two examples have 
been considered: the partially deactivated pellet (example one) and non-uniformly 
impregnated pellet (example two), satisfying constraint (19). 

The resulting activity distributions for the step function representations are in 
Figs 6 and 7. This representation is adequate in case of example two where the 
activity is restricted to a narrow region. For example one it is necessary to use the 
non-parametric form representation. In this case, as the first iteration the linear 
function satisfying condition (19) has been chosen. A reasonable linear function has 
been selected from several ones by comparing the values of the objective function. 
This procedure is illustrated in Fig. 8. After having found a first iteration, the activity 
profile has been computed iteratively by the proposed gradient-type method. In 
Fig. 9 the last iteration is exhibited, the decrease of the objective function by this 
gradient method procedure is in Fig. 10. These figures contain also the solution for 
the data with simulated noise. 

The method is not sensitive enough to the activity near the pellet center due to 
cylindrical geometry. This is why we introduce the dependence of the integral variable 

(26) 

on the dimensionless space coordinate q> (both examples, Figs 11 and 12). 
The results obtained indicate that the suggested activity distribution estimation 

technique works also for noisy data. The representation of the activity distribution 
in a non-parametric form appears to be suitable for estimation in case of partially 
deactivated pellet while the step function representation can be used in case of 
impregnation control. 

APPENDIX 

In this Appendix we derive formula (20) for the radient and adjoint Eq. (21). 
The objective function (18) can, be rewiritten 

I 

F = 2L.li' (Al) 
i= 1 

where 

(A2) 

and the gradient components are 

(A3) 
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where 

(A4) 

By linearizing Eqs (7) and (12) we obtain 

(AS) 

(A6) 

After multiplying (AS) by (n + 1) ql'p;, integrating over (0, 1), interchanging sides, 
and adding to (A4), we obtain 

Integrating by parts we have 

tJfi = [YAI(l) - YAs.] tJYA(l) + (n + 1) I q>1I[V2pi - Thl41my~;lpi]' 

. tJYA dq> - (n + 1) {Iq>IIPiThlY~c541 dq> + 

+ p~(1) tJYA(1) - Pi(1) c5Y~(1)} 

nd using Eq. (A6), 

[YAi(l) - YA • .] tJYil) - [p~(l) tJYi1) + Pi(1) c5Y~(l)] (n + 1) = 

(A8) 

= c5YA(l) [YAI(1) - YAs1 - p~(l) (n + 1) - Pi(l) ~alJ. (A9) 

If P is the solution of the adjoint equation 

(AIO) 

satisfying the boundary conditions 

p'(o) = ° 
Collection Czechoslovak Chem. Commun. [Vol. 52) [1987] 
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p'(l) = [YA(l) - YA1 - p(l) ~:i] (n ~ 1) , (All) 

then by substituting Eq. (A9) into (A8) we obtain 

fJ-!, = -en + 1) IIp''P'Thi~lfJ4> dlp, (Al2) 

where 

(A13) 

Then, 

(A14) 

The gradient components are 

(A 15) 

UST OF SYMBOLS 

a characteristic dimension of catalyst pellet 
C concentration 
Crer reference inlet concentration 
D effective diffusion coefficient 
F objective function 
1 number of measurements 
J number of analysed components 
k reaction rate constant 
km volume-averaged reaction rate constant 
K number of mesh points 
m reaction order 
n integer characteristic of pellet geometry 
p adjoint variable 
, space coordinate 
R dimensionless reaction rate 
Th Thiele modulus, Thl = a2kmcr:;!rfDA 
Y volumetric flow rate 
Vp volume of pellet 
W mass of pellet 
Y dimensionless concentration, YA = CA/CA,r.r 
Z. dimensionless parameter, Z. = kmWcr:;!r/(QY)= Z.okm/Y 
Q pellet density 
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fP dimensionless space coordinate, ffJ = rIa 
IP activity 
(J) active region 
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